Medición de la extensión del infarto por resonancia magnética contrastada en pacientes sometidos a ACTP primaria con y sin empleo de dispositivos de aspiración de trombo como terapia adjunta

Dr. Iván **Salazar-Peña**,* Cor. M.C. Hugo **Gutiérrez-Leonar**,** Dr. Héctor **González-Pacheco**,*** Dr. Moisés **Jiménez-Santos******

Instituto Nacional de Cardiología Ignacio Chávez/Hospital Central Militar. Ciudad de México.

RESUMEN

Introducción. La angioplastia coronaria transluminal percutánea (ACTP) temprana durante la fase aguda del infarto agudo del miocardio (IAM) ha demostrado ser la terapéutica más eficaz para rescatar tejido miocárdico y mejorar los resultados clínicos; sin embargo, las alteraciones en la microcirculación continúan siendo comunes pese al desarrollo de nuevas estrategias terapéuticas.

Métodos. Se incluyen pacientes con diagnóstico de IAM (con elevación del segmento ST) CEST, tratados mediante ACTP primaria, considerándose dos grupos de estudio, en el que fueron empleados dispositivos de aspiración de trombo como terapia adjunta y otro en el que no se utilizaron tales dispositivos. Se analizan las características clínicas basales, angiográficas y extensión del infarto mediante (resonancia magnética) IRM contrastada.

Resultados. Ambos grupos se constituyen principalmente por hombres con antecedente de tabaquismo, afección predominante de un vaso (p 0.043); documentándose obtención de flujo TIMI 3 en 78.7% (p 0.87) y TMP 3 en 57.5% (p = 0.01). En relación con las dimensiones del IAM no se documentan diferencias significativas entre ambos grupos en el número de segmentos afectados (p = 0.82) o la extensión transmural de la necrosis (p = 0.66).

Conclusiones. Los resultados obtenidos no apoyan la hipótesis de que la eficacia clínica asociada del uso de dispositivos de aspiración de trombo sea consecuencia de una reducción en las dimensiones del infarto.

Palabras clave: ACTP primaria, obstrucción microvascular, dispositivos de aspiración, cuantificación de la extensión del IAM, resonancia magnética contrastada.

Measurement of infarct proven by MRI in patients undergoing primary PCI with and without use of thrombus aspiration devices as adjunctive therapy

SUMMARY

Introduction. Percutaneous coronary intervention have been shown to improve salvaging myocardial tissue and clinical outcomes; nevertheless microvascular obstruction remains a common outcome in spite of new therapeutic strategies.

Methods. We included patients with STEMI treated with primary PCI, considering two different groups, a group treated with PCI and thrombus aspiration device and a group with PCI only. We studied baseline clinic characteristics, angiographic characteristics and infarct size assessed by magnetic resonance imaging.

Results. Both groups were made up by men with smoking history and single vessel disease (p 0.043), reaching final TIMI flow 3 in approximately 78.7% (p 0.87) and MBG 3 in 57.5% (p = 0.01). There weren't signifficance differences between both groups, considering the number of affected segments (p = 0.082) or the transmural infarct size (p = 0.66).

Conclusion: In our study, the obtained results doesn't support the hypothesis that the better clinical outcomes reported in literature related to use of thrombus aspiration devices are owing to a reduction in infarct size.

Key words: Primary PCI, microvascular obstruction, aspiration thrombus devices, infarct size, magnetic resonance imaging.

Correspondencia: Dr. Iván Salazar-Peña/Dr. Hugo Gutiérrez-Leonar.

Área de Medicina. Blvd. Manuel Ávila Camacho S/N Esq. Av. Ejército Nacional, Col. Lomas de Sotelo, C.P. 11200, México, D.F.

Recibido: Junio 20, 2013 Aceptado: Agosto 29, 2013

^{*} Residente de Cardiología Intervencionista del Hospital Central Militar. Instituto Nacional de Cardiología Ignacio Chávez. ** Jefe Área de Medicina Interna del Hospital Central Militar. *** Subjefe de la Unidad de Cuidados Coronarios. Instituto Nacional de Cardiología Ignacio Chávez. **** Médico Adscrito al Servicio de Imagen Cardiovascular. Instituto Nacional de Cardiología Ignacio Chávez.

Introducción

El intervencionismo coronario percutáneo realizado de manera temprana durante la fase aguda del infarto del miocardio es la manera más efectiva de rescatar tejido miocárdico y, por lo tanto, de mejorar los resultados clínicos; sin embargo, las alteraciones en la microcirculación son comunes debido al embolismo distal;^{2,3} existiendo una relación entre efectos adversos como la disminución en la función del ventrículo izquierdo y la supervivencia con haber alcanzado una pobre reperfusión miocárdica;4-6 contribuyendo además el daño por reperfusión hasta en 50% del tamaño total del infarto, lo que ha llevado al desarrollo de dispositivos, diseñados con la finalidad de tratar de disminuir o prevenir el embolismo distal durante el procedimiento de reperfusión, situación que ha sido analizada en diversos ensayos clínicos realizados de manera reciente; centrándose el estudio de los mismos en la evaluación de los resultados angiográficos (grado de éxito angiográfico anterógrado evaluado según la escala de flujo TIMI),8 electrocardiográficos (resolución del segmento ST);9 y en los ensayos publicados más recientemente, en la evaluación de los resultados clínicos (mortalidad) o eventos cardiovasculares mayores (compuesto de mortalidad, IAM o revascularización del vaso tratado), 10 existiendo, sin embargo, poca información publicada acerca de que la mejoría respecto a los resultados clínicos sea consecuencia de la eficacia de dichos dispositivos respecto a una reducción respecto a las dimensiones del infarto.¹¹

Inicialmente como parte del estudio del fenómeno de no reflujo, se pudo corroborar que por lo menos 25% de los pacientes en la fase aguda de un infarto agudo del miocardio no alcanzaban una adecuada perfusión tisular pese a un adecuado flujo a través de la circulación coronaria epicárdica, atribuyéndose dicha situación entre otros mecanismos a los efectos deletéreos condicionados por el embolismo distal.¹²

El empleo de dispositivos mecánicos diseñados con la finalidad de prevenir y/o reducir la embolismo distal comenzó a sugerirse a partir de los hallazgos obtenidos de ensayos clínicos prospectivos que demostraron que en los pacientes en los que ocurría embolismo distal angiográficamente evidente o fenómeno de no reflujo pese a la obtención un flujo epicárdico TIMI 3 (73%), presentaron una mayor magnitud del infarto evaluado mediante elevación de marcadores enzimáticos, además de mayor deterioro de la función ventricular izquierda en comparación de los grupos de pacientes sin dichas consecuencias; siendo el hallazgo de mayor relevancia un incremento del riesgo relativo de mortalidad de 8.6% a un seguimiento a cinco años; además de documentarse un mayor riesgo de embolismo distal en pacientes portadores de enfermedad multivascular.³

La información publicada por diversos grupos de investigación ha llevado al desarrollo de numerosos ensayos clínicos que han sido diseñados para evaluar los resultados del empleo de los dispositivos de aspiración de trombo, destacando algunos que han logrado concluir que la tasa de pacientes en los que se logra un mayor éxito angiográfico de flujo anterógrado y electrocardiográfico de reperfusión (flujo TIMI > 2 y resolución de la elevación del segmento ST > 70%) ha sido mayor en los grupos aleatorizados al uso de dispositivos de aspiración de trombo respecto a los grupos de intervencionismo coronario percutáneo (ICP) sin aspiración, 46.0 vs. 24.5%, OR 2.6 (IC 95% 1.1 a 6.2), p < 0.025, determinándose incluso en algunos estudios la aleatorización a ICP y aspiración de trombo como un factor independiente para lograr los determinantes de éxito angiográfico y electrocardiográfico antes citados (p < 0.013);12 considerando el grupo de pacientes que obtuvo mayor beneficio de la aplicación de dicha terapéutica a aquellos con un menor flujo distal y con una mayor carga de trombo; persistiendo, sin embargo, pese a los resultados positivos aproximadamente 50% de los pacientes en los que no fue posible obtener parámetros de éxito angiográfico y/o electrocardiográfico, con una incidencia de embolismo distal y fenómeno de no reflujo en aproximadamente 20% de los pacientes¹² dejando abierta la posibilidad de ampliar el estudio respecto a los diferentes tipos de dispositivos de aspiración de trombo y de la terapia farmacológica adjunta al empleo de los mismos.

En ensayos clínicos aleatorizados subsiguientes han sido evaluados múltiples puntos finales sustitutos (MACE), para estudiar la eficacia de la terapéutica de reperfusión, 13 concluyéndose que la medición de la magnitud del infarto tiene ventajas respecto a otras mediciones, dado que potencialmente puede ser utilizada para demostrar la eficacia de nuevas estrategias terapéuticas acerca de las estrategias existentes, demostrándose además su correlación referente a la predicción de mortalidad a corto y largo plazo; presentando también ventajas respecto a la medición de otros puntos finales de estudio, dado que la evaluación de los trastornos de movilidad global y/o regional, que son empleados comúnmente son susceptibles de la influencia de arritmias, miocardiopatías, valvulopatías, y el efecto de la pre/postcarga¹⁴ y los parámetros electrocardiográficos y enzimáticos presentan limitaciones importantes y una información limitada respecto a la capacidad de determinar la extensión del infarto.

Se ha documentado además una asociación estrecha entre la medición de la extensión transmural del IAM con los parámetros que habitualmente habían sido empleados como fracción de eyección del ventrículo izquierdo, trastornos de movilidad regional, liberación enzimática y evaluación mediante tomografía de emisión de fotón único (SPECT), los considerándose que el tamaño del infarto predice, según los resultados de algunos ensayos clínicos, la recuperación de la función posterior a un infarto agudo del miocardio. 17,22-25,26-28

Resulta, además, de importancia la evaluación de las diferentes estrategias terapéuticas actuales debido a que resultados de otros estudios recientes concluyen que a pesar del desarrollo de las nuevas estrategias, un mayor tiempo de isquemia se relaciona con una menor cantidad de tejido miocárdico rescatado y, por lo tanto, en mayores tasas de morta-

lidad independientemente de la estrategia y herramientas empleadas en la reperfusión. ³²⁻³⁴

El presente estudio tiene como objetivo evaluar mediante resonancia magnética cardiaca la extensión del infarto (respecto a extensión transmural y número de segmentos afectados), la presencia de obstrucción microvascular y los parámetros de función ventricular en el grupo de pacientes atendidos en el Instituto Nacional de Cardiología Ignacio Chávez, con el diagnóstico de IAM CEST sometidos a ACTP primaria y uso de dispositivos de aspiración de trombo como terapia adjunta; y su comparación respecto al grupo tratado únicamente con ACTP primaria.

Métodos

Se diseñó un estudio de cohorte histórica, longitudinal, prolectivo, basado en los registros de la UCC del Instituto Nacional de Cardiología Ignacio Chávez, en el cual fueron considerados los pacientes atendidos en el Servicio de Urgencias con el diagnóstico de infarto del miocardio con elevación del segmento ST dentro de las primeras seis horas de la fase aguda; atendidos dentro del periodo de enero de 2008 a julio de 2012; tratados mediante angioplastía coronaria transluminal percutánea primaria, considerándose para su inclusión en este estudio aquellos pacientes que cuentan con las características que se describen a continuación:

Criterios de inclusión:

- Diagnóstico de infarto con elevación del segmento ST definido como la presencia de la combinación de dolor torácico, miembro torácico, maxilar o epigástrico, de por lo menos 20 minutos de duración, que puede ser acompañado de diaforesis, disnea, náusea, vómito o síncope, acompañado de elevación del segmento ST en dos derivaciones contiguas.³⁵
- Oclusión total (TIMI 0-1) del segmento proximal o medio de la arteria descendente anterior, circunfleja o arteria coronaria derecha.
- Evidencia angiográfica de trombo acorde a la clasificación TIML³⁶

Criterios de exclusión:

- Inestabilidad hemodinámica: KK III o IV, definidos como la presencia de taquicardia, taquipnea o la presencia de estertores en más de 50% de la superficie de los campos pulmonares o edema pulmonar y como choque cardiogénico respectivamente.³⁶
- IAM previo
- Cirugía de revascularización coronaria previa.
- Ritmo de marcapaso.
- Contraindicación para efectuarse resonancia magnética cardiaca.

Previo a la intervención coronaria percutánea los pacientes reciben tratamiento antiplaquetario:

- Una dosis de 325 mg de ácido acetilsalicílico vía oral.
- Tienopiridina: 600 mg de clopidogrel o 60 mg de prasugrel. 37,38
- Administración de inhibidor de la glucoproteína IIb/IIIa previo o durante la ICP a consideración del cardiólogo intervencionista (acorde a los hallazgos angiográficos); tratamiento anticoagulante con heparina no fraccionada a dosis de 100 UI/kg de peso o 60 UI en caso del empleo de inhibidor GP IIb/IIIa para mantener un tiempo de coagulación activado (TCA) de 250-300 segundos y 200-250 segundos, respectivamente, el cual es monitoreado durante el transcurso de la intervención coronaria percutánea.

El inhibidor de GP IIb/IIIa usado con mayor frecuencia en nuestro instituto es tirofibán,³⁶ además del tratamiento encaminado hacia el manejo del dolor, con opioides (morfina 4-8 mg) con dosis adicionales de 2 mg a intervalos de 5 a 15 minutos,³⁶ oxígeno 2-4 L/min,³⁷ todo esto de acuerdo con lo establecido por las guías AHA/ACC/ESC para el tratamiento del IAM CEST.

El objetivo primario del estudio es la evaluación del tamaño del infarto cuantificado mediante resonancia magnética cardiaca contrastada, realizada dentro de un tiempo de siete días posterior a la fase aguda del infarto agudo del miocardio, además de la medición de fracción de expulsión del ventrículo izquierdo y de los volúmenes al final de la sístole y al final de la diástole.

Como objetivos secundarios se considera, además, la medición de los marcadores angiográficos de reperfusión, como flujo TIMI, TMP y la evidencia de datos de obstrucción microvascular evaluados también mediante IRM.

Análisis mediante resonancia magnética cardiaca

En diferentes publicaciones se reporta el cálculo del volumen del infarto por IRM, el cual es llevado a cabo mediante la medición de las áreas de miocardio con reforzamiento por planimetría asistida por computadora. El área de miocardio reforzado es trazada en cada corte, y multiplicada por el espesor de cada corte y por la densidad miocárdica de 1.05 g/mL para obtener la masa infartada.

Un segundo método para cuantificar las dimensiones del infarto consiste en el cálculo de un score de reforzamiento (0 a 4 puntos) para cada segmento, sumando la puntuación de todos los segmentos para posteriormente dividir el resultado entre la puntuación máxima posible (número de segmentos total x 4).

En nuestro centro hospitalario los volúmenes ventriculares y la fracción de expulsión son calculados mediante el trazo por planimetría asistida por computadora de los bordes epicárdicos y endocárdicos al final de la sístole y al final de la diástole. La extensión transmural de la necrosis se calcula en las imágenes de reforzamiento tardío; considerándose como no transmural una extensión menor al 50 %, y transmural la extensión entre el 51 y el 100 %; lo que permite representar en el presente trabajo con 1 punto a los segmentos con afección subendocárdica y 2 puntos a los segmentos con afección transmural, con la finalidad de permitirnos cuantificar la totalidad de los segmentos afectados a través de un puntaje total, independientemente de su extensión a través de la pared miocárdica.

Análisis angiográfico

En nuestro centro hospitalario el análisis angiográfico es llevado a cabo durante la intervención coronaria percutánea por un cardiólogo intervencionista experimentado, evaluando el flujo anterógrado, la presencia de lesiones coronarias, si éstas son angiográficamente significativas o no, tanto en la arteria responsable del infarto, como en las arterias coronarias no afectadas durante el evento agudo. Se evalúa además la presencia de circulación colateral en las secuencias iniciales previo al procedimiento, y durante el transcurso de éste se evalúa si existen datos de embolismo distal.

Una vez concluido el procedimiento se evalúa el flujo TIMI anterógrado, el flujo TMP, la presencia de embolismo distal y las consecuencias de éste de haber ocurrido durante el procedimiento.

Dentro del presente estudio las variables continuas se expresan como promedio \pm desviación estándar; el análisis de estas variables se realizó mediante la prueba t de Student, previa evaluación de la distribución de las mismas mediante la prueba de normalidad de Kolmogórov Smirnov. Las variables categóricas se expresan como frecuencia absoluta y relativa (%); su comparación entre los dos grupos de estudio se realizó mediante la prueba de χ^2 , considerando un valor de p < 0.05 como estadísticamente significativo.

El análisis estadístico se llevó a cabo mediante el uso del programa SPSS versión 19. (SPSS Inc., Chicago, Illinois).

Resultados

Inicialmente se conformó una cohorte constituida por 192 pacientes, de los cuales 96 de ellos se incluyeron en el grupo en el cual fueron empleados dispositivos de aspiración, y 96

pacientes del grupo de ACTP primaria. De estos se excluyeron 11 pacientes del primer grupo, los cuales contaban con el antecedente de haber sufrido IAM previamente, asimismo 13 pacientes fueron excluidos del grupo de ACTP por presentar dicho criterio de exclusión.

De los 85 pacientes sometidos a ACTP y empleo de dispositivo de aspiración 22 de ellos no fueron considerados en el análisis final, a consecuencia de no haber concluido el protocolo de estudio, al no contar con IRM cardiaca contrastada. De los 83 pacientes restantes del grupo de ACTP se excluyeron del análisis final 17 de ellos, también por no haber completado el protocolo establecido.

La población final se constituyó por 63 pacientes pertenecientes al grupo de ACTP + empleo de dispositivo de aspiración y 66 pacientes se incluyeron en el grupo correspondiente a ACTP, dentro de los cuales no se encontraron diferencias significativas dentro del análisis de sus características clínicas basales, constituyéndose principalmente ambos grupos por pacientes pertenecientes al género masculino (116 pacientes, 54 de ellos pertenecientes al grupo de ACTP + dispositivo de aspiración y 62 al grupo de ACTP), encontrándose solamente 13 mujeres con las características requeridas para su inclusión en cualquiera de los grupos (nueve pertenecientes al grupo de ACTP + dispositivo de aspiración y cuatro al grupo de ACTP) (Cuadro 1).

Respecto a las características angiográficas en ambos grupos los pacientes presentaron predominantemente afección de un solo vaso (p 0.043) (*Cuadro 2*). siendo la arteria responsable del síndrome isquémico la arteria descendente anterior (47.6 % de los pacientes del grupo de ACTP + dispositivo de aspiración y 54.5 % de los pacientes del grupo de ACTP, p 0.03), documentándose también en ambos grupos un flujo TIMI inicial de 0 (56 pacientes del grupo de aspiración [88%] y 47 pacientes del grupo de ACTP que representan el 71.2 %). En las *figuras 1* a 3 se demuestra la representación gráfica de dichos resultados.

Respecto a los resultados angiográficos se reporta la obtención de un flujo epicárdico final TIMI 3 en 49 pacientes del grupo de ACTP + dispositivo de aspiración (77.7 %) mientras que en el grupo de ACTP se alcanzó el mismo flujo epicárdico en 52 pacientes (78.7 %), destacando la obtención de

Cuadro 1. Características basales.

Características	Número	Grupo aspiración de trombo	Grupo ACTP	Valor de P
Edad	129	58.03 ± 10.78	59.12 ± 11.07	
Género				0.12
Masculino	116	54 (85.70)	62 (93.9)	
Femenino	13	9 (14.2)	4 (6.06)	
Características clínicas				
Diabetes	37	22 (34.90)	15 (27.72)	0.12
Tabaquismo	100	45 (71.42)	55 (83.33)	0.10
Hipertensión	51	25 (39.68)	26 (39.39)	0.97
Dislipidemia	40	16 (25.39)	24 (36.36)	0.17

ACTP: angioplastía coronaria transluminal percutánea.

Cuadro 2. Características angiográficas.

Características<	Grupo ACTP + aspiración	Grupo ACTP	Valor de P
Número de vasos afectados	63	66	0.043
1	42	30	
2	13	19	
3	8	17	
Arteria responsable	63	66	0.03
DA	30	36	
Circunfleja	3	14	
CD	30	16	
Flujo TIMI inicial	63	66	0.043
0	56	47	
1	2	6	
2	5	13	
Circulación colateral	6	12	0.93

ACTP: angioplastía coronaria transluminal percutánea. DA: arteria descendente anterior. Cx: arteria circunfleja. CD: arteria coronaria derecha.

Figura 1. Selección de pacientes. ACTP: angioplastía coronaria transmluminal percutánea. IAM: infarto agudo del miocardio. IRM: resonancia magnética.

TMP 3 en 22 pacientes (34.9 %) del grupo de ACTP + aspiración; mientras que en el grupo de ACTP se alcanza un TMP 3 en 38 pacientes (57.5 %) (p = 0.87) (Cuadro~3). Destaca la proporción en que fue empleado el tratamiento adjunto con inhibidores de glucoproteína IIbIIIa, corroborándose su administración en 45 pacientes del grupo de ACTP + aspiración (71.4 %), mientras que en el grupo de ACTP solamente fueron administrados en 22 pacientes (33.3 %) (p = 0.000) (Figuras~4-7).

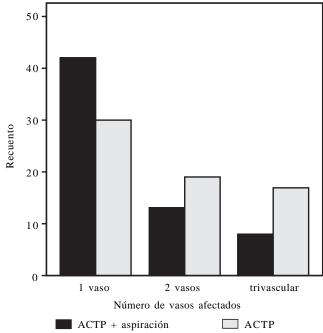


Figura 2. Número de vasos afectados. ACTP: angioplastia coronaria translumnal percutánea.

En relación con la cuantificación de las dimensiones del infarto y de los parámetros de función ventricular cabe destacar que ambos grupos presentan una media de cuatro segmentos afectados y una puntuación total de 7.32 ± 4.77 en el grupo de ACTP + aspiración y de 7.09 ± 4.79 en el grupo de ACTP (*Cuadro 4*), por lo que no se documentan diferencias significativas entre ambos grupos en el número de segmentos afectados (p = 0.82) ni en la extensión del daño en dichos segmentos (p = 0.66). En las *figuras 8* y 9 se pueden apreciar dicha comparación de forma gráfica. Se documentó evidencia de obstrucción microvascular en 71.4% de los pacientes del grupo de ACTP + aspiración en relación con 57.7% de

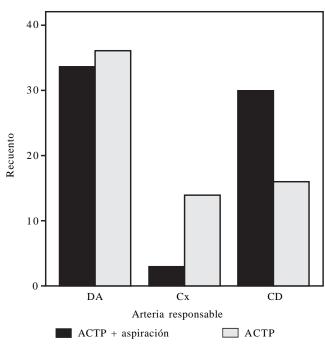


Figura 3. Arteria responsable del IAM. ACTP: angioplastía coronaria transluminal percutánea. DA: arteria descendente anterior. Cx: arteria circunfleja. CD: arteria coronaria derecha.

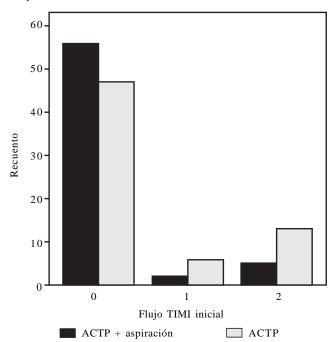


Figura 4. Flujo TIMI inicial. ACTP: angioplastía coronaria transluminal percutánea. TIMI: thrombolisis in myocardial infarction group.

los pacientes del grupo de ACTP, sin encontrarse diferencia significativa entre ambos grupos (p = 0.10) (*Figuras 10* y 11).

Discusión

De acuerdo con las guías vigentes para el manejo del infarto agudo del miocardio con elevación del segmento ST, publicadas por la ESC/ACC/AHA la IRM contrastada se considera un estudio idóneo a realizar previo o posterior al egreso del paciente, para la determinación de función ventricular izquierda, medición de las dimensiones del IAM, viabilidad e isquemia,³⁷ dado que información actual derivada de ensayos clínicos sugiere que la IRM es capaz de calcular infartos de menor tamaño, predecir viabilidad miocárdica y es más

reproducible respecto a SPECT, además que hasta 47% de los infartos de extensión subendocárdica documentados por IRM no fueron detectados inicialmente con la técnica SPECT.^{30,31}

Por otra parte, la extensión del infarto parece delinear la posibilidad de predecir la recuperación funcional posterior aun síndrome coronario agudo, al diferenciar y cuantificar la cantidad de tejido viable respecto a aquel no viable. En pequeños estudios el tamaño del infarto medido mediante resonancia magnética contrastada fue el parámetro con mayor asociación significativa con la incidencia de eventos cardiovasculares mayores.²⁹

Recientemente se ha publicado evidencia que reporta la utilidad de la medición del área miocárdica en riesgo a través de estudios no invasivos, específicamente IRM contrasta-

Cuadro 3. PCI y resultados angiográficos.

	Grupo aspiración de trombo	Grupo ACTP	Valor de P
Inhibidores IIb/IIIa	45 (71.4)	22 (33.3)	0.000
Colocación de Stents	60 (95.2)	62 (93.9)	0.74
Flujo TIMI Final			0.87
3	49 (77.7)	52 (78.7)	
2	11 (17.4)	12 (18.1)	
1	0	0	
0	3 (4.7)	2 (3.03)	
ΓMP final	,	• /	0.010
0-2	41 (65.07)	28 (42.2)	
3	22 (34.9)	38 (57.5)	

ACTP: angioplastía coronaria transluminal percutánea. TIMI: thrombolysis in myocardial infarction group. TMP: grado de perfusión miocárdica.

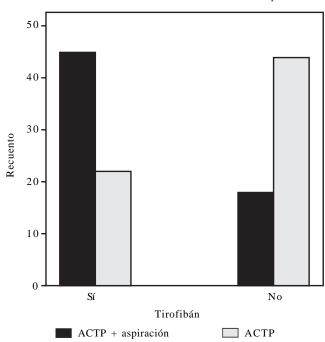


Figura 5. Empleo de inhibidores IIb/IIIa. ACTP: angioplastía coronaria transluminal percutánea.

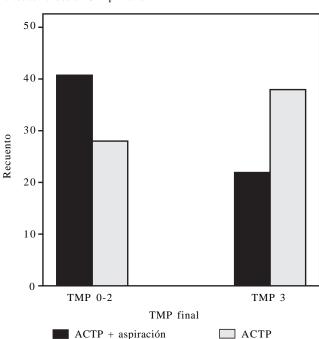


Figura 7. TMP final. ACTP: angioplastía coronaria transluminal percutánea. TMP: grado de perfusión miocárdica.

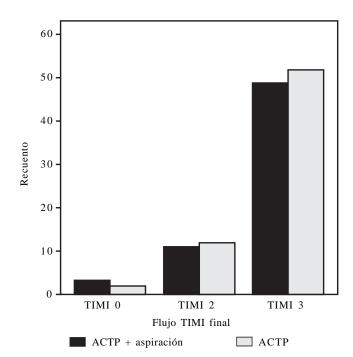


Figura 6. Flujo TIMI final. ACTP: angioplastía coronaria transluminal percutánea. TIMI: thrombolysis in myocardial infarction group.

da, bajo la justificación teórica de que, pese a que el daño celular es inducido de manera temprana posterior a la oclusión arterial coronaria, la reperfusión temprana limitaría el tamaño del infarto, logrando rescatar miocardio que de otra

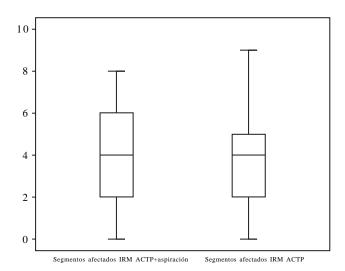
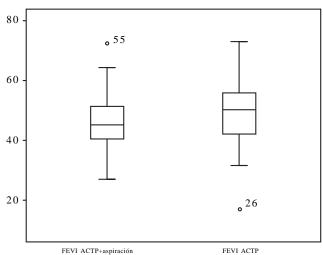
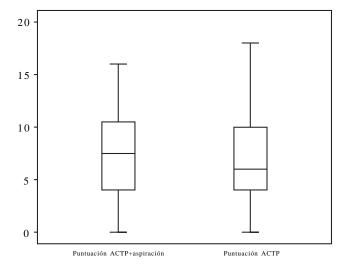
manera se convertiría en miocardio necrótico, siendo posible de esta manera evaluar la eficacia de la terapia de reperfusión. Esta información ha condicionado el reciente desarrollo de diferentes índices que permiten evaluar el área de miocardio en riesgo, mediante las mediciones en secuencia T2 de IRM menos el tamaño final del infarto en la secuencia de reforzamiento tardío (ambos efectuados de manera retrospectiva) como un indicador de predicción de eventos cardiovasculares mayores, dada la relación existente entre una mayor área de miocardio rescatado mediante angioplastía primaria y una menor remodelación ventricular, resultando en la preservación de una mejor función ventricular posterior al IAM CEST tratado mediante angioplastía primaria; evidencia que ha comenzado a ser sujeta a validación mediante ensayos clínicos subsiguientes, que han sido diseñados con la finalidad de evaluar la confiabilidad de la medición mediante IRM del área de miocardio rescatado posterior a angioplastía primaria, documentando una confiabilidad aceptable, permaneciendo, sin embargo, aún como desventaja la falta de un método estandarizado para realizar dicha medición, que permita una adecuada comparación entre los resultados obtenidos en los diferentes estudios.40

En el presente trabajo destacan algunas limitaciones como el hecho de haberse constituido en una cohorte de diseño longitudinal, prolectivo, basado en registros, limitado por no controlar la maniobra terapéutica ni la probable presencia de nuevos factores confusores; sin embargo, evalúa de manera ambispectiva los resultados obtenidos en nuestro centro hospitalario a través de la aplicación de las estrategias actuales de reperfusión, y su correlación con los diferentes

Cuadro 4. Evaluación mediante IRM contrastada.

Parámetros IRM	Grupo de ACTP + aspiración	Grupo ACTP	Valor de P
Volumen diastólico final	106.36 ± 30.69	111.12 ± 35.57	0.43
Volumen sistólico final	59.53 ± 23.12	59.31 ± 25.72	0.96
FEVI	46.12 ± 10.13	48.57 ± 9.65	0.14
Número de segmentos afectados	4.0 ± 2.46	3.95 ± 2.38	0.82
Puntuación	7.32 ± 4.77	7.09 ± 4.79	0.66
Obstrucción microvascular	45 (71.4)	38 (57.57)	0.10

ACTP: angioplastía coronaria transluminal percutánea. IRM: resonancia magnética. FEVI: fracción de eyección del ventrículo izquierdo.

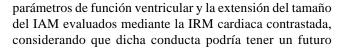

Figura 8. Número de segmentos afectados. ACTP: angioplastía coronaria transluminal percutánea.

Figura 10. FEVI (Grupo de ACTP + aspiración *vs.* grupo de ACTP). **ACTP:** angioplastía coronaria transluminal percutánea. **FEVI:** fracción de ejección del ventrículo izquierdo.

Figura 9. Puntuación (Segmentos de afección transmural + No transmural). **ACTP:** angioplastía coronaria transluminal percutánea.

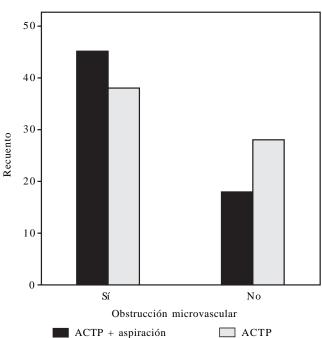


Figura 11. Obstrucción microvascular. ACTP: angioplastía coronaria transluminal percutánea.

promisorio en la práctica clínica diaria, de permitirnos conocer si documentar el área miocárdica en riesgo o el área miocárdica rescatada es un medio más eficaz de predecir la recuperación funcional posterior a un síndrome isquémico coronario agudo o de predecir la asociación respecto a la incidencia de eventos cardiovasculares mayores, situaciones que podrían convertirse en una herramienta importante encaminada a complementar la atención del paciente portador de cardiopatía isquémica; resultando el principal inconveniente en la actualidad, la falta de un método o score estandarizado para realizar tales mediciones, como ha sido citado en párrafos anteriores.

Conclusiones

Los resultados obtenidos en el presente estudio no apoyan la hipótesis de que la eficacia clínica derivada del uso de dispositivos de aspiración de trombo como terapia adjunta a ACTP primaria que ha sido reportada en la literatura sea consecuencia de una reducción en las dimensiones del infarto.

Referencias

- Stone GW, Grines CL, Cox DA, et al. Comparison of angioplasty with stenting, with and without abciximab, in acute myocardial infarction. N Engl J Med 2002; 346: 957.
- 2. Bhatt DL, Topol EJ, et al. Does creatinine kinase-MB elevation after percutaneous coronary intervention predict outcomes in Periprocedural cardiac enzyme elevation predicts adverse outcomes. Circulation 2005; 112: 906-15.
- 3. Henriques JP, Zijlstra F, Ottervanger JP, et al. Incidence and clinical significance of distal embolization during primary angioplasty for acute myocardial infarction. Eur Heart J 2002; 23: 1112-17.
- 4. Poli A, Fetiveau R, Vandoni P, et. Al. Integrated analysis of myocardial blush and ST-segment elevation recovery after successful primary angioplasty: real-time grading of microvascular reperfusion and prediction of early and late recovery of left ventricular function. Circulation 2002; 106: 313-18.
- 5. Ito H, Maruyama A, Iwakura K, et al. Clinical implications of the 'no reflow' phenomenon. A predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction. Circulation 1996; 93: 223-8.
- 6. Stone GW, Peterson MA, Lansky AJ, et al. Impact of normalized myocardial perfusion after successful angioplasty in acute myocardial infarction. J Am Coll Cardiol 2002; 39: 591-7.
- 7. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med 2007; 357: 1121-35.
- 8. Van 't Hof AW, Liem A, Suryapranata H, et. Al. Angiographic assessment of myocardial reperfusion in patients treated with primary angioplasty for acute myocardial infarction: myocardial blush grade. Zwolle Myocardial Infarction Study Group. Circulation 1998; 97: 2302-6.
- 9. Van 't Hof AW, Liem A, de Boer MJ, et al. Clinical value of 12-lead electrocardiogram after successful reperfusion therapy for acute myocardial infarction. Zwolle Myocardial Infarction Study Group. Lancet 1997; 350: 615-19.
- 10. Bavry AA, Kumbhani DJ, Bhatt DL. Role of adjunctive thrombectomy and embolic protection devices in acute myocardial infarction: a comprehensive meta-analysis of randomized trials. Eu Heart J 2008; 29: 2989-3001.
- 11. Lipiecki J, Monzy S, Durel N. Effect of thrombus aspiration on infarct size and left ventricular function in high-risk patients with acute myocardial infarction treated by percutaneous coronary intervention. Am Heart J 2009; 157: 583.
- 12. Burzotta F, Trani C, Romagnoli E. Manual Thrombus-Aspiration Improves Myocardial Reperfusion. The Randomized Evaluation

- of the Effect of Mechanical Reduction of Distal Embolization by Thrombus-Aspiration in Primary and Rescue Angioplasty (REMEDIA) Trial. J Am Coll Cardiol 2005; 46(2): 371-6.
- 13. Gibbons RJ, Miller TD, Christian TF. Infarct size measured by single photon emission computed tomographic imaging with 99mT-csestamibi: a measure of the efficacy of therapy in acute myocardial infarction. Circulation 2000; 101: 101-8.
- 14. Califf RM, Harrelson-Woodlief L, Topol EJ. Left ventricular ejection fraction may not be useful as an end point of thrombolytic therapy comparative trials. Circulation 1990; 82: 1847-53.
- 15. Wu E, Judd RM, Vargas JD, et al. Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet 2001; 357: 21-8.
- 16. Petersen SE, Horstick G, Voigtlander T, et al. Diagnostic value of routine clinical parameters in acute myocardial infarction: a comparison to delayed contrast enhanced magnetic resonance imaging. Delayed enhancement and routine clinical parameters after myocardial infarction. Int J Cardiovasc Imaging 2003; 19: 409-16.
- 17. Choi KM, Kim RJ, Gubernikoff G, et al. Transmural extent of acute myocardial infarction predicts long-term improvement in contractile function. Circulation 2001; 104: 1101-7.
- 18. Martin TN, Groenning BA, Steedman T, et al. A single troponin Iconcentration measured 12 hours after onset of chest pain accurately reflects infarct size as measured by gadolinium-DTPA late enhancement magnetic resonance imaging. J Am Coll Cardiol 2003; 41: 380-1.
- 19. Hoe V, Vanderheyden M. Ischemic cardiomyopathy: value of different MRI techniques for prediction of functional recovery after revascularization. Am J Roentgenol 2004; 182: 95-100.
- 20. Klein C, Nekolla SG, Bengel FM, et al. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation 2002; 105: 162-7.
- 21. Kuhl HP, Beek AM, van der Weerdt AP, et al. Myocardial viability in chronic ischemic heart disease: comparison of contrast-enhanced magnetic resonance imaging with (18)F-fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 2003; 41: 1341-8.
- 22. Hoe V, Vanderheyden M. Ischemic cardiomyopathy: value of different MRI techniques for prediction of functional recovery after revascularization. Am J Roentgenol 2004; 182: 95-100.
- 23. Sandstede JJ, Lipke C, Beer M, et al. Analysis of first-pass and delayed contrast-enhancement patterns of dysfunctional myocardium on MR imaging: use in the prediction of myocardial viability. AJR Am J Roentgenol 2000; 174: 1737-40.
- 24. Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 2000; 343: 1445-53.
- 25. Knuesel PR, Nanz D, Wyss C, et al. Characterization of dysfunctional myocardium by positron emission tomography and magnetic resonance. Circulation 2003; 108: 1095-100.)
- 26. Gerber BL, Garot J, Bluemke DA, et al. Accuracy of contrast-enhanced magnetic resonance imaging in predicting improvement of regional myocardial function in patients after acute myocardial infarction. Circulation 2002; 106: 1083-9.
- 27. Motoyasu M, Sakuma H, Ichikawa Y, et al. Prediction of regional functional recovery after acute myocardial infarction with low dose dobutamine stress cine MR imaging and contrast enhanced MR imaging. J Cardiovasc Magn Reson 2003; 5: 563-74.
- 28. Beek AM, Kuhl HP, Bondarenko O, et al. Delayed contrastenhanced magnetic resonance imaging for the prediction of regional functional improvement after acute myocardial infarction. J Am Coll Cardiol 2003; 42: 895-901.
- 29. Wu KC, Zerhouni EA, Judd RM, et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 1998; 97: 765-72.
- 30. Wagner A, Mahrholdt H, Holly TA, et al. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 2003; 361: 374-9.

- 31. Kitagawa K, Sakuma H, Hirano T, et. Al. Acute myocardial infarction: myocardial viability assessment in patients early thereafter comparison of contrast-enhanced MR imaging with resting (201)TI SPECT. Single photon emission computed tomography. Radiology 2003; 226: 138-44.
- 32. Tarantini G, Cacciavillani L, Corbetti F, et al. Duration of ischemia is a major determinant of transmurality and severe microvascular obstruction after primary angioplasty a study performed with contrast-enhanced magnetic resonance. J Am Coll Cardiol 2005; 46(7): 1229-35.
- 33. Newby LK, Rutsch WR, Califf RM, et al. Time from symptom onset to treatment and outcomes after thrombolytic therapy. J Am Coll Cardiol 1996; 27: 1646-55.
- 34. De Luca G, Suryapranata H, Ottervanger JP, et l. Time delay to treatment and mortality in primary angioplasty for acute myocardial infarction: every minute of delay count. Circulation 2004; 109: 1223-5.
- 35. Thygesen K, Alpert JS, Harvey D, et al. Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. Universal definition of myocardial infarction. Eu Heart J 2007; 28: 2525-38.

- 36. Sianos G, Papafaklis MI, Serruys PW, et al. Angiographic Thrombus Burden Classification in Patients With ST-Segment Elevation Myocardial Infarction Treated With Percutaneous Coronary Intervention. J Invasive Cardiol 2010; 22: 6-14.
- 37. Kushner FG, Hand M, et al. Focused Updates: ACC/AHA Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction (Updating the 2004 Guideline and 2007 Focused Update) and ACC/AHA/SCAI Guidelines on Percutaneous Coronary Intervention (Updating the 2005 Guideline and 2007 Focused Update) A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. JACC Vol. 54, No. 23, 2009. December 1, 2009:2205-41.
- 38. Van de Werf F, Bax J, Betriu A, et al. Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation. Eu Heart J 2008; 29: 2909-45.
- 39. Wiviott SD, Braunwald E, McCabe CH, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2007; 357: 2001-15.
- 40. Desch S, Engelhardt H, Meissner J. Reliability of myocardial salvage assessment by cardiac magnetic resonance imaging in acute reperfused myocardial infarction. Int J Cardiovasc Imaging 2012; 28(2): 263-72.

